翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

dual wavelet : ウィキペディア英語版
dual wavelet

In mathematics, a dual wavelet is the dual to a wavelet. In general, the wavelet series generated by a square integrable function will have a dual series, in the sense of the Riesz representation theorem. However, the dual series is not in general representable by a square integral function itself.
==Definition==
Given a square integrable function \psi\in L^2(\mathbb), define the series \ by
:\psi_(x) = 2^\psi(2^jx-k)
for integers j,k\in \mathbb.
Such a function is called an ''R''-function if the linear span of \ is dense in L^2(\mathbb), and if there exist positive constants ''A'', ''B'' with 0 such that
:A \Vert c_ \Vert^2_ \leq
\bigg\Vert \sum_^\infty c_\psi_\bigg\Vert^2_ \leq
B \Vert c_ \Vert^2_\,
for all bi-infinite square summable series \. Here, \Vert \cdot \Vert_ denotes the square-sum norm:
:\Vert c_ \Vert^2_ = \sum_^\infty \vert c_\vert^2
and \Vert \cdot\Vert_ denotes the usual norm on L^2(\mathbb):
:\Vert f\Vert^2_= \int_^\infty \vert f(x)\vert^2 dx
By the Riesz representation theorem, there exists a unique dual basis \psi^ such that
:\langle \psi^ \vert \psi_ \rangle = \delta_ \delta_
where \delta_ is the Kronecker delta and \langle f\vert g \rangle is the usual inner product on L^2(\mathbb). Indeed, there exists a unique series representation for a square integrable function ''f'' expressed in this basis:
:f(x) = \sum_ \langle \psi^ \vert f \rangle \psi_(x)
If there exists a function \tilde \in L^2(\mathbb) such that
:\tilde_ = \psi^
then \tilde is called the dual wavelet or the wavelet dual to ψ. In general, for some given ''R''-function ψ, the dual will not exist. In the special case of \psi = \tilde, the wavelet is said to be an orthogonal wavelet.
An example of an ''R''-function without a dual is easy to construct. Let \phi be an orthogonal wavelet. Then define \psi(x) = \phi(x) + z\phi(2x) for some complex number ''z''. It is straightforward to show that this ψ does not have a wavelet dual.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「dual wavelet」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.